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Autonomous 

Broad applications of 3D data
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Roboti Augmented  

Medical Image 
Processing
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3D Understanding Enables Interactions
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[SIGGRAPH Asia 
2016]

Example: 3D understanding for a robot
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Shape
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3D Understanding Enables Interactions
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Shape

Mass

Mobility

Graspable 
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AI Perspective of 3D Understanding
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See the world

Understand the world 

Transform the world

Sensory

Cognition Action

Towards interaction with the physical world, 
3D is the key!



3D Perception requires
“Knowledge” of 3D World
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Traditional 3D Vision
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Multi-view Geometry: Physics based



3D Learning: Knowledge Based
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3D Learning: Knowledge Based
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Acquire Knowledge of 3D World by Learning
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3D Learning Tasks

    Hao Su                                                     18

3D Analysis

Classification Segmentation
(object/scene)

Correspondence
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3D Learning Tasks
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3D Synthesis

Monocular 
3D reconstruction

Shape completion Shape modeling
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3D Learning Tasks
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3D-based Knowledge Transportation
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3D Learning Tasks
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Intuitive Physics based on 3D Understanding
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Deep Learning on 3D: A New Rising Field
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3D 
Understanding

Computer 
Vision

Computer 
Graphics Robotics

Cognitive 
Science

Machine 
Learning

Differential 
Geometry

Topological 
Analysis

Functional 
Analysis

Artificial 
Intelligence

Mathematics
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Outline
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Overview of 3D Deep Learning

3D Deep Learning Algorithms



02/23/2018

The Representation Issue of 3D 
Deep Learning
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Images: Unique representation with regular data structure



02/23/2018    Hao Su                                                     25

3D has many representations:

multi-view RGB(D) images

volumetric
polygonal mesh

point cloud
primitive-based models

The Representation Issue of 3D 
Deep Learning
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Novel view image synthesis

3D has many representations:

multi-view RGB(D) 

images
volumetric

polygonal mesh
point cloud

primitive-based models

The Representation Issue of 3D 
Deep Learning
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3D has many representations:

multi-view RGB(D) images

volumetric
polygonal mesh

point cloud
primitive-based models

The Representation Issue of 3D 
Deep Learning
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Cartesian Product Space of 
“Task” and “Representation”
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3D geometry analysis

3D synthesis
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Fundamental Challenges of 3D Deep Learning
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Convolution needs an underlying structure
Can we directly apply CNN on 3D data?
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3D has many representations:

multi-view RGB(D) images

volumetric

Rasterized vs Geometric

    Hao Su                                                     33

• Can directly apply CNN
• But has other challenges

Rasterized form 
(regular grids) 
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3D has many representations:

multi-view RGB(D) images

volumetric
polygonal mesh

point cloud
primitive-based models

Fundamental Challenges of 3D Deep Learning
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Geometric form
(irregular)

Cannot directly apply CNN

Rasterized form 
(regular grids) 
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3D Deep Learning Algorithms (by Representations)
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• Projection-based

[Su et al. 2015]
[Kalogerakis et al. 2016]
…

[Maturana et al. 2015]
[Wu et al. 2015] (GAN)
[Qi et al. 2016]
[Liu et al. 2016]
[Wang et al. 2017] (O-Net)
[Tatarchenko et al. 2017] (OGN)
…

VolumetricMulti-view
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3D Deep Learning Algorithms (by Representations)
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• Projection-based

[Defferard et al. 2016]
[Henaff et al. 2015]
[Yi et al. 2017] (SyncSpecCNN)
…

VolumetricMulti-view

[Qi et al. 2017] (PointNet)
[Fan et al. 2017] (PointSetGen)

Point cloud Mesh (Graph CNN) Part assembly

[Tulsiani et al. 2017]
[Li et al. 2017] (GRASS)

[Su et al. 2015]
[Kalogerakis et al. 2016]
…

[Maturana et al. 2015]
[Wu et al. 2015] (GAN)
[Qi et al. 2016]
[Liu et al. 2016]
[Wang et al. 2017] (O-Net)
[Tatarchenko et al. 2017] (OGN)
…
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3D has many representations:

multi-view RGB(D) images

volumetric

Fundamental Challenges of 3D Deep Learning
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• Can directly apply CNN
• But has other challenges

Rasterized form 
(regular grids) 



Deep Learning on 
Multi-view Representation 
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Multi-view Representation as 3D Input
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▪ Leverage the huge CNN literature in image 
analysis
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Multi-view Representation as 3D Input
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▪ Classification
…

…

…

…

CNN1
. . .

View 
poolin

g

CNN2:       a second 
ConvNet producing 
shape descriptors 

…

CNN2

softmax

Hang Su, Subhransu Maji, Evangelos Kalogerakis, Erik 
Learned-Miller, "Multi-view Convolutional Neural 
Networks for 3D Shape Recognition", Proceedings of 
ICCV 2015
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Multi-view Representation as 3D Output
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▪ The Novel-view Synthesis Problem
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Fully Convolutional Network (FCN)
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Segmentati
on:

Learning Deconvolution 
Network for Semantic 
Segmentation
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Idea 1: Direct Novel-view Synthesis

    Hao Su                                                 43

Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox,
“Multi-view 3D Models from Single Images with a Convolutional Network”,
ECCV2016
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Results are often Blurry

    Hao Su                                                44
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+

++

+ …

…0.1 0.4 0.3

Observed view image

Novel view feature
Su et al, 3D-Assisted Image Feature Synthesis for Novel Views of an Object, ECCV 2016

Idea 2: Explore Cross-View Relationship
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Idea 2: Explore Cross-View Relationship
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Single-view network architecture:

Zhou et al, View Synthesis by Appearance Flow, ECCV 2016
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Idea 2: Explore Cross-View Relationship
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Combine both ideas
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• First, apply flow prediction
• Second, conduct invisible part hallucination

Park et al, Transformation-Grounded Image Generation Network for Novel 3D View Synthesis, 
CVPR 2017
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Combine both ideas
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Articulated Shapes: 
Assist Flow Synthesis by Depth Estimation
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source image forward flow

backward flow target image

Value
point to

value 
point to

coordinate
registered

coordinate
registered

visible region
invisible region

flow (red is origin)

My latest paper accepted by CVPR’18
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Articulated Shapes: 
Assist Flow Synthesis by Depth Estimation
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depth net

flow net

mask net

…… ……

……

View Para

Conv. block

Deconv. block Full connection block

Projection/Transforming layer

Residual link

Residual conv. block

Source image Forward
flow

Remapped flow Backward flow

Forward flow Target mask

Target image

Depth image

My latest paper accepted by CVPR’18



Deep Learning on 
Volumetric Representation 
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Popular 3D volumetric data
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fMRI Manufacturing 
(finite-element analysis)

GeologyCT
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Volumetric Representation as 3D Input
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▪ The main hurdle is Complexity
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The Sparsity Characteristic of 3D Data
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Resolution: 32 64 128
Occupancy:

Li et, FPNN: Field Probing Neural Networks for 3D Data, NIPS 2016



02/23/2018

Solution: Octree based CNN (O-CNN)
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Octree
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Convolution on Octree
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• Neighborhood searching: Hash table

OCTREEFullVoxel

Gernot Riegler, Ali Osman Ulusoy, Andreas Geiger
“OctNet: Learning Deep 3D Representations at High Resolutions”
CVPR2017
Pengshuai Wwang, Yang Liu, Yuxiao Guo, Chunyu Sun, Xin Tong
“O-CNN: Octree-based Convolutional Neural Network for Understanding 3D Shapes”
SIGGRAPH2017
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Volumetric Representation as 3D Input
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▪ The main hurdle is still Complexity
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A Straight-forward Implementation
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Choi et al. ECCV 2016
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Towards Higher Spatial Resolution
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Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox
“Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D 
Outputs”
arxiv (March, 2017)
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Progressive Voxel Refinement

    Hao Su                                                61



02/23/2018

3D has many representations:

multi-view RGB(D) images

volumetric
polygonal mesh

point cloud
primitive-based models

Fundamental Challenges of 3D Deep Learning
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Geometric form
(irregular)

Cannot directly apply CNN

Rasterized form 
(regular grids) 



Deep Learning on 
Polygonal Meshes



02/23/2018

Mesh as 3D Input
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▪ Deep Learning on Graphs
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Geometry-aware Convolution can be Important
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convolutional 
along spatial 
coordinates

convolutional considering 
underlying geometry

image credit: D. Boscaini, et al.image credit: D. Boscaini, et al.
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Meshes can be represented as graphs
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3D shape graph social network molecules
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How to define convolution kernel on graphs? 
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from Shuman et al. 2013

• Desired properties:

• locally supported (w.r.t graph metric)

• allowing weight sharing across different 
coordinates
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Issues of Geodesic CNN
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• The local charting method relies on a fast 
marching-like procedure requiring a triangular 
mesh.

• The radius of the geodesic patches must be 
sufficiently small to acquire a topological disk.

• No effective pooling, purely relying on 
convolutions to increase receptive field.
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Spectral construction: Spectral CNN
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Fourier analysis

Convert convolution to multiplication in spectral domain
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Bases on meshes: eigenfunction of Laplacian-
Bertrami operator
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Synchronization of functional space across 
meshes
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Functional map

Li Yi, Hao Su, Xingwen Guo, Leonidas Guibas
“SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation”
CVPR2017 (spotlight)
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Mesh as 3D Output
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▪ At the heart a surface parameterization 
problem 
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Deep learning on surface parameterization
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Use CNN to predict the parameterization, then 
convert to 3D mesh

Step 1 Step 2
Ayan Sinha, Asim Unmesh, Qixing Huang, Karthik Ramani
“SurfNet: Generating 3D shape surfaces using deep residual networks”
CVPR2017



Deep Learning 
on Point Cloud Representation
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Point Cloud: the Most Common Sensor Output
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Figure from the recent VoxelNet paper from Apple.
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Point Cloud as 3D Input
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▪ Deep Learning on Sets (orderless)
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Properties of a desired neural 
network on point clouds
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2D array representation

N

D

Point cloud: N orderless points, each represented by a 
D dim coordinate

Hao Su*, Charles Qi*, Kaichun Mo, Leonidas Guibas
“PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”
CVPR2017 (oral)
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2D array representation

N

D

Properties of a desired neural 
network on point clouds

Point cloud: N orderless points, each represented by a 
D dim coordinate
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Point cloud: N orderless points, each represented by a 
D dim coordinate

2D array representation

N

D

N

D

represents the same set as 

Properties of a desired neural 
network on point clouds
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Permutation invariance: Symmetric function
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Examples:

…

f (x1, x2,…, xn ) = max{x1, x2,…, xn}
f (x1, x2,…, xn ) = x1 + x2 +…+ xn

f (x1, x2,…, xn ) ≡ f (xπ1 , xπ2 ,…, xπn ) xi ∈!
D,
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Construct symmetric function family
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Observe:

f (x1, x2,…, xn ) = γ ! g(h(x1),…,h(xn )) is symmetric if      is symmetricg
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(1,2,3)

(1,1,1)

(2,3,2)

(2,3,4)

h

Observe:

f (x1, x2,…, xn ) = γ ! g(h(x1),…,h(xn )) is symmetric if      is symmetricg
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(1,2,3)
(1,1,1)

(2,3,2)

(2,3,4)

simple symmetric function

h

g

Observe:

f (x1, x2,…, xn ) = γ ! g(h(x1),…,h(xn )) is symmetric if      is symmetricg
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Construct symmetric function family
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(1,2,3)
(1,1,1)

(2,3,2)

(2,3,4)

simple symmetric function

PointNet (vanilla)

h

g γ

Observe:

f (x1, x2,…, xn ) = γ ! g(h(x1),…,h(xn )) is symmetric if      is symmetricg
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Q: What symmetric functions can be constructed 
by PointNet?
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PointNet 
(vanilla)

Symmetric functions
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A: Universal approximation to continuous symmetric 
functions

    Hao Su                                               86

Theorem:

PointNet (vanilla)

A Hausdorff continuous symmetric function                    can be 
arbitrarily approximated by PointNet.

f :2X → !

S ⊆ !d ,
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PointNet is Light-weight
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1000K

10000K

100000K

MVCNN

Space complexity (#params)

Subvolume VRN PointNet

multi-view

volumetric

point cloud

⎧⎨⎩

Saves 95% GPU memory
100M

10M

1M
[Su et al. 2015] [Su et al. 2016] [Su et al. 2016] [Su et al. 2017]
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Robustness to data corruption
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Robustness to data corruption

    Hao Su                                               89

Segmentation from partial scans
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Visualize what is learned by reconstruction
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Salient points are discovered!
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PointNet v2.0: Multi-Scale PointNet
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N points in 
(x,y)

N1 points in 
(x,y,f)

N2 points in 
(x,y,f’)

1. Larger receptive field in higher layers 
2. Less points in higher layers (more scalable) 
3. Weight sharing 
4. Translation invariance (local coordinates in 

local regions)
Charles Qi, Hao Su, Li Yi, Leonidas Guibas
“PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space”
NIPS 2017
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Fuse 2D and 3D:
Frustum PointNets for 3D Object Detection

    Hao Su                                               92

+ Leveraging mature 2D detectors for region proposal and 3D search space reduction 
+ Solving 3D detection problem with 3D data and 3D deep learning architectures

My latest paper accepted at CVPR 2018
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Our method ranks No. 1 on KITTI 3D Object 
Detection Benchmark
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We get 5% higher AP than Apple’s recent CVPR submission 
and more than 10% higher AP than previous SOTA in easy category

..
.
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Our method ranks No. 1 on KITTI 3D Object 
Detection Benchmark
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We are also 1st place for smaller objects (ped. 
and cyclist) winning with even bigger margins.

..
.

..
.
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Remarkable box 
estimation accuracy 
even with a dozen 
of points or with 
very partial point 
cloud
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Point Cloud as 3D Output
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▪ Deep Learning to Generate Combinatorial 
Objects
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Supervision from “Synthesize for Learning”

98

ShapeNet
Renderer
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3D Representation: Point Cloud
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Describe shape for the whole object

Usable as network output?

No prior works in the deep learning community!
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3D Prediction by Point Clouds

Input Reconstructed 3D point cloud

100

Hao Su, Haoqiang Fan, Leonidas Guibas
“A Point Set Generation Network for 3D Object Reconstruction from a Single Image”
CVPR2017 (oral)
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3D Prediction by Point Clouds

Input Reconstructed 3D point cloud

101
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Pipeline
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CVPR ’17, Point Set Generation

Loss
on

sets

sampl
e

(L)

Deep network Prediction

(f)
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Loss function: Earth Mover’s Distance (EMD)
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• Given two sets of points, measure their discrepancy:

Differentiable Admit fast computation
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Generalization to Unseen Categories
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input observed view   input observed view  

Out of training 



Deep Learning on 
Primitives
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Describe Shapes by Primitives

    Hao Su                                                     

▪ What are parts? Reusable substructures!
▪ A Structure Mining Problem
▪ By DL, also a Meta-Learning Problem

106



02/23/2018

Primitive-based Assembly

    Hao Su                                                     107

Shubham Tulsiani, Hao Su, Leonidas Guibas, Alexei A. Efros, Jitendra Malik
Learning Shape Abstractions by Assembling Volumetric Primitives
CVPR 2017
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Approach

    Hao Su                                                     108

We predict primitive parameters: size, rotation, 
translation of M cuboids. 

Variable number of parts? We predict “primitive 
existence probability”
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Generative Models for Shapes
by Reusing Primitives
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▪ Incremental Assembly-based modeling
▪ “Transfer Learning” in the sense of reusing
prior knowledge
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Primitive Space from ShapeNet Parts
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Markov Modeling Process
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Part assembly:
Markov process – Incrementally assemble parts.

Sung et al, ComplementMe: Weakly-Supervised Component Suggestions for 3D Modeling
SIGGRAPH Asia 2017
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New part proposal by network
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Placement 
Network

Proposal 
Network

Component 
Embedding  

Space

Partial  
Assembly

Output
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Automatic Shape Synthesis
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Automatic Shape Synthesis
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Thank you!


