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Our world is 3D




Broad applications of 3D data
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Broad applications of 3D data

Roboti Auamented

Medical Image
Processing



3D Understanding Enables Interactions

Example: 3D understanding for a robot

[SIGGRAPH Asia
2016]



3D Understanding Enables Interactions

P

m . ‘ - \ | =
.& — .5 Ty

~

St

N
’




3D Understanding Enables Interactions
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3D Understanding Enables Interactions
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Al Perspective of 3D Understanding

Sensory

See the world

Understand the world
Cognition Action

Transform the world

Towards interaction with the physical world,
3D is the key!




UCSan Diego

3D Perception requires
“Knowledge” of 3D World



Traditional 3D Vision

Multi-view Geometry: Physics based




3D Learning: Knowledge Based




3D Learning: Knowledge Based
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Acquire Knowledge of 3D World by Learning

A priori knowledge of
the 3D world




3D Learning Tasks
3D Analysis

It is a chairl

Classification Segmentation Correspondence
(object/scene)




3D Learning Tasks
3D Synthesis
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3D Learning Tasks

3D-based Knowledge Transportation

-
oavrer ..
e " -

MNatural language description
“A tall director’s choir with thin,
] s that cross
diagonoily In the midale. Ihe seat anaf—&

fiickeest nre muce of ook falivie. =

Product webpage

Rendered 2D views

EEE2 90 T
Ve Segm

-
LT

ETTE
L

¥

RGB-D Scan Virtual 3D Environment




3D Learning Tasks

Intuitive Physics based on 3D Understanding
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Deep Learning on 3D: A New Rising Field

Artificial
Intelligence

Topological 3D
Analysis Understanding

Geometry
Functional
Analysis

Mathematics




Outline

Overview of 3D Deep Learning

3D Deep Learning Algorithms




The Representation Issue of 3D
Deep Learning

Images: Unique representation with regular data structure

1 |44 3312120123 ]33%]| 1«

51|1¢ 40|32 |46 |48 |23 17
291€C 3 |63 |19(55|36( 7

. . . 4
N2 e 26147 AR 10 A1 25

2|24 19|11|2¢|a3]z[8
57 o [ 37]42]25]2127] 18
'30]3¢ 50|64 3 [0 € |13
58[47 as|31[20(15]s2] 56




The Representation Issue of 3D
Deep Learning

3D has many representations:

multi-view RGB(D) images
volumetric

polygonal mesh

point cloud

primitive-based models



The Representation Issue of 3D
Deep Learning

3D has many representations:

Novel view image synthesis point cloud

multi-view RGB(D)

images

volumetric

polygonal mesh

primitive-based models
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The Representation Issue of 3D
Deep Learning

3D has many representations:

o multi-view RGB(D) images
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primitive-based models
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The Representation Issue of 3D
Deep Learning

3D has many representations:

multi-view RGB(D) images
volumetric

polygonal mesh

point cloud

primitive-based models



Cartesian Product Space of
“Task™ and “Representation”

3D geometry analysis ﬁ_@

3D synthesis




Fundamental Challenges of 3D Deep Learning

Convolution needs an underlying structure

Can we directly apply CNN on 3D data?

C3 1 maps 1668010x10
C1. feature magps S4
6@28x28

Lsslan connections
Convelutions Subsampling Conwslutione  Subsampling Full conneclion




Rasterized vs Geometric

3D has many representations:

Rasterized form multi-view RGB(D) images
(regular grids)

volumetric

* Can directly apply CNN
* But has other challenges



Fundamental Challenges of 3D Deep Learning

3D has many representations:

Geometric form polygonal mesh
(irregular) point cloud

Cannot directly apply CNN primitive-based models



3D Deep Learning Algorithms (by Representations)

* Projection-based

2
w o=, ]2 [Su et al. 2015] [Maturana et al. 2015]
;7 ’ A [Kalogerakis et al. 2016] [Wu et al. 2015] (GAN)
' )\ G- R [Qi et al. 2016]
' gR. | = ~ [Liuetal. 2016]
T ‘ [Wang et al. 2017] (O-Net)
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[Tatarchenko et al. 2017] (OGN)

Multi-view Volumetric




3D Deep Learning Algorithms (by Representations)

* Projection-based

[Maturana et al. 2015]
[Wu et al. 2015] (GAN)

4
o .' 7 [Su et al. 2015]
— [Qi et al. 2016]

[Kalogerakis et al. 2016]

e [Liu et al. 2016]
“ ‘< [Wang et al. 2017] (O-Net)
. » [Tatarchenko et al. 2017] (OGN)
Multi-view ,. Volumetric
'\\ '.r/}'*. Yy [Tulsiani et al. 2017]
W ‘e [Li et al. 2017] (GRASS,
A

[Defferard et al. 2016]
[Henaff et al. 2015]
[Yi et al. 2017] (SyncSpecCN

" /[Qi et al. 2017] (PointNet)
[Fan et al. 2017] (PointSetGen)

Point cloud Mesh (Graph CNN) Part assembly




Fundamental Challenges of 3D Deep Learning

3D has many representations:

Rasterized form multi-view RGB(D) images
(regular grids)

volumetric

* Can directly apply CNN
* But has other challenges



Deep Learning on
Multi-view Representation



Multi-view Representation as 3D Input

= Leverage the huge CNN literature in image
analysis




Multi-view Representation as 3D Input

= Classification
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CNN,

CNN,: a second

ConvNet producing
shape descriptors

Hang Su, Subhransu Maji, Evangelos Kalogerakis, Erik
Learned-Miller, "Multi-view Convolutional Neural
Networks for 3D Shape Recognition", Proceedings of
ICCV 2015

Hao Su 40




Multi-view Representation as 3D Output

= The Novel-view Synthesis Problem




Fully Convolutional Network (FCN)

Segmentati
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Idea 1: Direct Novel-view Synthesis
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Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox,
“Multi-view 3D Models from Single Images with a Convolutional Network”,
ECCV2016




Results are often Blurry
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Idea 2: Explore Cross-View Relationship

Observed view image

Novel view feature
Su et al, 3D-Assisted Image Feature Synthesis for Novel Views of an Object, ECCV 2016

Hao Su 45




Idea 2: Explore Cross-View Relationship

Single-view network architecture:

Input view
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view
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Zhou et al, View Synthesis by Appearance Flow, ECCV 2016
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Idea 2: Explore Cross-View Relationship




Combine both ideas

Completion
DOAFN Network Adversarial Network [ Real/Fake
7 / Feature level loss
1 K VGG16 Network
0 Transformation l

L1 Pixel-wise loss

- First, apply flow prediction

- Second, conduct invisible part hallucination

Park et al, Transformation-Grounded Image Generation Network for Novel 3D View Synthesis,
CVPR 2017

Hao Su 48




Combine both ideas

"




Articulated Shapes:
Assist Flow Synthesis by Depth Estimation

I flow (red is origin)l
| Bl visible region :
coordinate L _-_ iEVi_Sib_leief’y_iOE -1
registered
source image forward flow

Value
point to coordinate
registered

backward flow target image
My latest paper accepted by CVPR’18

50



Articulated Shapes:
Assist Flow Synthesis by Depth Estimation

o
mdl 2N Lalal

| Remapped flow Backward flow

" Conv. block ' Residual conv. block . Projection/Transforming layer
“ Deconv. block ' Full connection block |__J Residual link

My latest paper accepted by CVPR’18
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Deep Learning on
Volumetric Representation



Popular 3D volumetric data

fMRI
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Volumetric Representation as 3D Input

= The main hurdle is Complexity




The Sparsity Characteristic of 3D Data

4occupied grid | P ]
Occupancy: 10.41% 5.09% 2.41%

Resolution: 32 64 128

#total grid

Li et, FPNN: Field Probing Neural Networks for 3D Data, NIPS 2016

Hao Su 55




Solution: Octree based CNN (O-CNN)

CONV —» POOL — CONV = PUOUL = CUNV = FOOL —- CUNV = POOL — CUNV




Convolution on Octree
» Neighborhood searching: Hash table

e

ullVox

CTREE

Gernot Riegler, Ali Osman Ulusoy, Andreas Geiger

“OctNet: Learning Deep 3D Representations at High Resolutions”

CVPR2017

Pengshuai Wwang, Yang Liu, Yuxiao Guo, Chunyu Sun, Xin Tong

“O-CNN: Octree-based Convolutional Neural Network for Understanding 3D Shapes”
SIGGRAPH2017

Hao Su Y4




Volumetric Representation as 3D Input

= The main hurdle is still Complexity




A Straight-forward Implementation

Choi et al. ECCV 2016




Towards Higher Spatial Resolution

Octree Octree Octree
level 1 level 2 level 3

Pl

1283

dense

Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox

“Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D
Outputs”

arxiv (March, 2017)

Hao Su 60




Progressive Voxel Refinement

Fi, F, F
OGNConv OGNProp
dy (one or more)
|
c -
d2
1% conv
- [] propagated features
OGNLoss [[] empty
- t
W filled
[ mixed

Ground truth Prediction




Fundamental Challenges of 3D Deep Learning

3D has many representations:

Geometric form polygonal mesh
(irregular) point cloud

Cannot directly apply CNN  \5rimitive-based models



Deep Learning on
Polygonal Meshes



Mesh as 3D Input

= Deep Learning on Graphs




Geometry-aware Convolution can be Important

-
I

image credit: D. Boscaini, et al. image credit: D. Boscaini, et al.

convolutional
along spatial
coordinates

convolutional considering
underlying geometry




Meshes can be represented as graphs

¥ O

3D shape graph social network molecules




How to define convolution kernel on graphs?

* Desired properties:
* locally supported (w.r.t graph metric)

» allowing weight sharing across different
coordinates

from Shuman et al. 2013




Issues of Geodesic CNN

* The local charting method relies on a fast
marching-like procedure requiring a triangular
mesh.

* The radius of the geodesic patches must be
sufficiently small to acquire a topological disk.

* No effective pooling, purely relying on
convolutions to increase receptive field.




Spectral construction: Spectral CNN

Fourier analysis

Convert convolution to multiplication in spectral domain




Bases on meshes: eigenfunction of Laplacian-
Bertrami operator

* “Fourier basis” of the graph V. Elbf‘nve( tors of A

‘e ©» %

U3n




Synchronization of functional space across
meshes

Functional map

y
Input Lo somme o - soommedh rr somme oo R T —
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t

Forward Transform @ Backward Transform 0 Transpose
0 Spectral Multiplication Spectral Transformer Network 0 1xI Conv

Li Yi, Hao Su, Xingwen Guo, Leonidas Guibas
“SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation”
CVPR2017 (spotlight)




Mesh as 3D Output

= At the heart a surface parameterization
problem




Deep learning on surface parameterization

Use CNN to predict the parameterization, then
convert to 3D mesh

x H
d
z
Original
Shape Coordinates
Step 1 Step 2
Ayan Sinha, Asim Unmesh, Qixing Huang, Karthik Ramani

“SurfNet: Generating 3D shape surfaces using deep residual networks”
CVPR2017




Deep Learning
on Point Cloud Representation



Point Cloud: the Most Common Sensor Output

Car

Pedestrian
Cyclist




Point Cloud as 3D Input

= Deep Learning on Sets (orderless)




Properties of a desired neural
network on point clouds

N

D,
N

2D array representation

Point cloud: N orderless points, each represented by a
D dim coordinate

Hao Su*, Charles Qi*, Kaichun Mo, Leonidas Guibas
“PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”
CVPR2017 (oral)

Hao Su 77




Properties of a desired neural
network on point clouds

N

D,
N

2D array representation

Point cloud: N orderless points, each represented by a
D dim coordinate




Properties of a desired neural
network on point clouds

-' D,
N represents the same setas -
S e

2D array representation

Point cloud: N orderless points, each represented by a
D dim coordinate




Permutation invariance:

D
F(x,Xxy,..0x,) = f(xﬂl,xﬂz,...,xﬂn), x, eR

Examples:

f(x,%,,...,x, ) =max{x,,X,,...,X, }

XXy ,0x)=x,+x,+...+ X,




Construct symmetric function family

Observe:

JxXy %, ) =Y 0 8(h(x),.. . h(x,)) is symmetric if 8 is symmetric




Construct symmetric function family

Observe:

J s Xye0x,) =7 0 g(A(X)....h(x,)) is symmetric if & is symmetric
h




Construct symmetric function family

Observe:

J s Xye0x,) =7 0 g(A(X)....h(x,)) is symmetric if & is symmetric

h

(1,2,3) — simple symmetric function
(1,1.1) - ¢

232 1

(2,3,4)




Construct symmetric function family

Observe:

J s Xye0x,) =7 0 g(A(X)....h(x,)) is symmetric if & is symmetric

h

(1,2,3) -

(1,1,1)

(2,3,2) -
(2,3,4)

simple symmetric function

g/ 7
om |

PointNet (vanilla)




Q: What symmetric functions can be constructed
by PointNet?

Symmetric functions

PointNet
(vanilla)




A: Universal approximation to continuous symmetric
functions

Theorem:

A Hausdorff continuous symmetric function f:2* >R can be
arbitrarily approximated by PointNet.

~,

AY

1

\ i

7

< €

) -7 (MAX {120}

N

SR, PointNet (vanilla)




100M

10M

1M

PointNet is Light-weight

Space complexity (#params)

i-view Saves 95% GPU memory
volumetric
poini'OlL

MVCNN Subvolume VRN PointNet

[Suetal. 2015] [Suetal 2016] [Suetal. 2016] [Su etal. 2017]




Robustness to data corruption
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Robustness to data corruption

Segmentation from partial scans
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Visualize what is learned by reconstruction
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PointNet v2.0: Multi-Scale PointNet

..?;;:..’ ... | )

N points |n N1 poi’ﬁts in N2 points in
(x,y) (x,y.f) (x,y,f’)

1. Larger receptive field in higher layers /
2. Less points in higher layers (more scalable) /

3. Weight sharing v
4. Translation invariance (Iocalyordinates In

local regions)

Charles Qi, Hao Su, Li Yi, Leonidas Guibas
“PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space”

NIPS 2017



Fuse 2D and 3D:
Frustum PointNets for 3D Object Detection

- . R

2D region (from CNN) to 3D frudum

+ Leveraging mature 2D detectors for region proposal and 3D search space reduction
+ Solving 3D detection problem with 3D data and 3D deep learning architectures

My latest paper accepted at CVPR 2018




Our method ranks No. 1 on KITTI 3D Object
Detection Benchmark

We get 5% higher AP than Apple’s recent CVPR submission
and more than 10% higher AP than previous SOTA in easy category

method A’g Code Modsmte Lasy larc Runtime Laviroament Corpars

1 FP,guusg; 7039 % $1,20% 62,15 N 017 s GPU & 3.0 Ghz (Pyvan)
2 VaNetLICAR] = 611 % TrATX 57.73% 0.23s GPU @ 2.5 Shz (Pythan « C/Ces)
3 A0 =) 65,025 TE48X 7875 C.085 a0 X (pascal)
4 MV3D = 62,15 % TL.®X 55.12% 0.365 GPU & 2.5 Shz (Pythan » C/Ces)
oOAar M, M L AN, B, U and T I M-V S UDACt Datecion Metwerk e A 80nsmeut Urvng. LYPI 1),
L] MVID (LIDAR! o 53,73 % 57T X S.Ns 245 GPU E 2.5 Shz (Pythan « C/Ces)
Ko e M, mia, Ao Aan, B, U and T X0 M- Yiewr 0 O gt Drtection Netwers Mo A gonomese Drving. CWPR 2012,
6 F.FC CNN =) 42,57 % S X 40,13 % 055 GPU @ 3,0 Ghz (Matlab + C/Ce=)
Y SON =) 21,45 3208 X 18,53 % .07 s GPU ® 1.5 Ghz (Pyion)
8 WMNGtY2 e 15,24 % e, 78X 12.89 % 0,025 OFU @ 2.5 Chg [C/Ce)
9 Jdss50 1497 % 171X 19.43 % 0.03s GPU & 2.5 Shz (Pythan » C/Ces)
10 LMnet e Y13 % MN.1a 9.19% s GPUR 1.7 LEr (Pytran + (LCes)
[ ]
[ ]




Our method ranks No. 1 on KITTI 3D Object
Detection Benchmark

We are also 1st place for smaller objects (ped.
and cyclist) winning with even bigger margins.

Pedestri an!
Mothod <ttne Code Nocerate Easy Hard Runtime envircnment Compcre
1 [-PairtHet 1 44.85% 51.21% 40.21% 0.17s GPU ® 1.0 Ghz (Pythan)
¢ Rt LIVAS) el 569 % EL AL AR LUFE GPJ @ 2.5 Ghz IPython + C/C++ )|
3 AL .87 % 32.67% 2201 % 0.08s Ttan X (pascal)
4 14D 17.35 % 0.22 % I7.1‘D% 0.01s GP.® 2.5 Ghz (Python + C/Ce+)
[ ]
[ J
Cyclist
Methad Setting | Code  Moderate Ensy Hard Jurtima Environment Campxe
1 F- kuu.iav - 56.77 % TI96% 50.39% 0.17s CPU® 306 u (Python)
2 VzRel[.iDAR) - 4336 % 61.223% 4437 % 0235 GPU ® 1.5 Chz (PyLhon « C/Ces)
] AYOD e 31.43% 41742 .12 : 0.06 < Titan X (pascal)
[




Remarkable box
estimation accuracy
even with a dozen
of points or with
very partial point
cloud




Image
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Point Cloud as 3D Output

= Deep Learning to Generate Combinatorial
Objects




Supervision from “Synthesize for Learning”

i L L R e e

Lﬁ_.4‘>8~> wHS.o_huailpeNet




3D Representation: Point Cloud

v Describe shape for the whole object -

? Usable as network output?
LU

k% e

. - PN LY
:" i \\’ .tﬁaxv

LR ‘ N

QT
No prior works in the deep learning community!

Hao Su 99




3D Prediction by Point Clouds

Input Reconstructed 3D point cloud

Hao Su, Haogiang Fan, Leonidas Guibas
“A Point Set Generation Network for 3D Object Reconstruction from a Single Image”
CVPR2017 (oral)

100




3D Prediction by Point Clouds

Input Reconstructed 3D point cloud




Pipeline

— e e e e e e e e o e e e o o = e o e e e e e e = e e e e = e e = = = = = = = = —

o___-

Predicti

(901, Y1, 21)
:> (2, Y2, 22)

(a:n: Yn, Zn)

Deep network "

_— e o e e e e e = — — —
— e e e e e e e e e o e e e o e e e e e - = e = = — — —

CVPR ’17, Point Set Generation




Loss function: Earth Mover’s Distance (EMD)

Given two sets of points, measure their discrepancy:
]

dpymn(S1.Ss) = mm E | — @(x)||2
d:S1—>
wal ‘\‘ ./.

where @ : 57 — S is a hijection, /

Differentiable Admit fast computation




Generalization to Unseen Categories

input observed view 20 input observed view 90"

-
=~

-
fi
E:’ 5
[ 4 "
h 4

Out of trainina




Deep Learning on
Primitives



Describe Shapes by Primitives

= What are parts? Reusable substructures!
= A Structure Mining Problem




Primitive-based Assembly

Shubham Tulsiani, Hao Su, Leonidas Guibas, Alexei A. Efros, Jitendra Malik
Learning Shape Abstractions by Assembling Volumetric Primitives
CVPR 2017

Hao Su 107




Approach

We predict primitive parameters: size, rotation,
translation of M cuboids.

Variable number of parts? We predict “primitive
existence probability”

Hao Su 108




Generative Models for Shapes
by Reusing Primitives

= Incremental Assembly-based modeling




Primitive Space from ShapeNet Parts

a Source %

Parts

FGUP/PGDN: slica vaxels
EniE+FCUREFAON: change oane
Parl Type meashes H
4 30w 297515 cabiz9bol07er980:EL0 ta-orgihoze
f - Groupl
t = GrOURE
- Broup&smeshsimeshs-gaomelry
Group&/meshsmeshs-geomelry
I = Geoup?
= Groupi0
Group1!
¢ Groupl2
b= Group_10_1/Graun_10
v=Group 12 1/Group 124reen@a mach26-ceometry

Group_12_2Graun_12_7_ZAnssn2émesh2s-peomeaty
.= Geoup_10_2/Graun_10_7_2
= Group 23 1/Graua 23 azxifmeshif-ceomatry
 Oroup 28 2Croup 23 ¢ Zhreanddimash3r-gcomeaty

Hao Su 110



Markov Modeling Process

Part assembly:
Markov process — Incrementally assemble parts.

Sung et al, ComplementMe: Weakly-Supervised Component Suggestions for 3D Modeling
SIGGRAPH Asia 2017




New part proposal by network

—| Proposal i NN Placemen
EE - |-
Network \’" s Network

“, Partial Component=
Embedding
Space '

y Assembly




Automatic Shape Synthesis
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Automatic Shape Synthesis
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Thank you!



