

3D Deep Learning: An Overview based on My Work

Hao Su Feb 23, 2018

Our world is 3D

Roboti

Roboti

Augmented

Example: 3D understanding for a robot

[SIGGRAPH Asia 2016]

Al Perspective of 3D Understanding

Towards **interaction** with the physical world, 3D is the key!

3D Perception requires "Knowledge" of 3D World

Traditional 3D Vision

Multi-view Geometry: Physics based

3D Learning: Knowledge Based

3D Learning: Knowledge Based

Hao Su

16

Acquire Knowledge of 3D World by Learning

3D Analysis

Classification

Segmentation (object/scene)

Correspondence

3D Synthesis

Monocular 3D reconstruction

Shape completion Shape modeling

3D-based Knowledge Transportation

Intuitive Physics based on 3D Understanding

Deep Learning on 3D: A New Rising Field

Hao Su

Outline

Overview of 3D Deep Learning

3D Deep Learning Algorithms

Images: Unique representation with regular data structure

3D has many representations:

3D has many representations:

Novel view image synthesis

multi-view RGB(D)

images

volumetric

polygonal mesh

point cloud

primitive-based models

3D has many representations:

multi-view RGB(D) images

volumetric

polygonal mesh

point cloud

primitive-based models

3D has many representations:

3D has many representations:

3D has many representations:

Cartesian Product Space of "Task" and "Representation"

3D geometry analysis

3D synthesis

Fundamental Challenges of 3D Deep Learning

Convolution needs an underlying structure Can we directly apply CNN on 3D data?

Rasterized vs Geometric

3D has many representations:

Rasterized form (regular grids)

- Can directly apply CNN
- But has other challenges

multi-view RGB(D) images volumetric

Fundamental Challenges of 3D Deep Learning

3D has many representations:

Rasterized form (regular grids)

Geometric form (irregular) Cannot directly apply CNN multi-view RGB(D) images volumetric polygonal mesh

point cloud

primitive-based models

3D Deep Learning Algorithms (by Representations)

Projection-based

Multi-view

[Su et al. 2015] [Kalogerakis et al. 2016]

[Maturana et al. 2015] [Wu et al. 2015] (GAN) [Qi et al. 2016] [Liu et al. 2016] [Wang et al. 2017] (O-Net) [Tatarchenko et al. 2017] (OGN)

Volumetric

. . .

3D Deep Learning Algorithms (by Representations)

Projection-based

[Su et al. 2015] [Kalogerakis et al. 2016]

[Maturana et al. 2015] [Wu et al. 2015] (GAN) [Qi et al. 2016] [Liu et al. 2016] [Wang et al. 2017] (O-Net) [Tatarchenko et al. 2017] (OGN)

en)

Volumetric

[Defferard et al. 2016] [Henaff et al. 2015] [Yi et al. 2017] (SyncSpecCN [Tulsiani et al. 2017] [Li et al. 2017] (GRASS)

Point cloud

Mesh (Graph CNN)

Part assembly
Fundamental Challenges of 3D Deep Learning

3D has many representations:

Rasterized form (regular grids)

- Can directly apply CNN
- But has other challenges

multi-view RGB(D) images volumetric

Deep Learning on Multi-view Representation

Multi-view Representation as 3D Input

Leverage the huge CNN literature in image analysis

Multi-view Representation as 3D Input

Classification

Hang Su, Subhransu Maji, Evangelos Kalogerakis, Erik Learned-Miller, "**Multi-view Convolutional Neural Networks for 3D Shape Recognition**", *Proceedings of ICCV 2015*

Multi-view Representation as 3D Output

The Novel-view Synthesis Problem

Fully Convolutional Network (FCN)

Idea 1: Direct Novel-view Synthesis

Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox, **"Multi-view 3D Models from Single Images with a Convolutional Network",** ECCV2016

Results are often Blurry

Idea 2: Explore Cross-View Relationship

Observed view image

Novel view feature

Su et al, 3D-Assisted Image Feature Synthesis for Novel Views of an Object, ECCV 2016

Idea 2: Explore Cross-View Relationship

Single-view network architecture:

46

Idea 2: Explore Cross-View Relationship

Combine both ideas

- First, apply flow prediction
- Second, conduct invisible part hallucination

Park et al, Transformation-Grounded Image Generation Network for Novel 3D View Synthesis, CVPR 2017

Combine both ideas

Articulated Shapes: Assist Flow Synthesis by Depth Estimation

Hao Su

Articulated Shapes: Assist Flow Synthesis by Depth Estimation

My latest paper accepted by CVPR'18

Deep Learning on Volumetric Representation

Popular 3D volumetric data

fMRI

CT

Manufacturing (finite-element analysis)

Volumetric Representation as 3D Input

The main hurdle is Complexity

The Sparsity Characteristic of 3D Data

Li et, FPNN: Field Probing Neural Networks for 3D Data, NIPS 2016

Solution: Octree based CNN (O-CNN)

Convolution on Octree

• Neighborhood searching: Hash table

Gernot Riegler, Ali Osman Ulusoy, Andreas Geiger

"OctNet: Learning Deep 3D Representations at High Resolutions" *CVPR2017*

Pengshuai Wwang, Yang Liu, Yuxiao Guo, Chunyu Sun, Xin Tong

"O-CNN: Octree-based Convolutional Neural Network for Understanding 3D Shapes" SIGGRAPH2017

Volumetric Representation as 3D Input

The main hurdle is still Complexity

A Straight-forward Implementation

Choi et al. ECCV 2016

Towards Higher Spatial Resolution

Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox

"Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs"

arxiv (March, 2017)

Progressive Voxel Refinement

Fundamental Challenges of 3D Deep Learning

3D has many representations:

Rasterized form (regular grids)

Geometric form (irregular) Cannot directly apply CNN multi-view RGB(D) images volumetric polygonal mesh

point cloud

primitive-based models

Deep Learning on Polygonal Meshes

Mesh as 3D Input

Deep Learning on Graphs

Geometry-aware Convolution can be Important

image credit: D. Boscaini, et al.

convolutional considering underlying geometry

image credit: D. Boscaini, et al. convolutional along spatial coordinates

Meshes can be represented as graphs

3D shape graph social network

molecules

How to define convolution kernel on graphs?

- Desired properties:
 - locally supported (w.r.t graph metric)
 - allowing weight sharing across different coordinates

from Shuman et al. 2013

Issues of Geodesic CNN

- The local charting method relies on a fast marching-like procedure requiring a triangular mesh.
- The radius of the geodesic patches must be sufficiently small to acquire a topological disk.
- No effective pooling, purely relying on convolutions to increase receptive field.

Spectral construction: Spectral CNN

Fourier analysis

Convert convolution to multiplication in spectral domain

Bases on meshes: eigenfunction of Laplacian-Bertrami operator

Synchronization of functional space across meshes

Functional map

Li Yi, Hao Su, Xingwen Guo, Leonidas Guibas "SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation" CVPR2017 (spotlight)

Mesh as 3D Output

 At the heart a surface parameterization problem
Deep learning on surface parameterization

Use CNN to predict the parameterization, then convert to 3D mesh

Ayan Sinha, Asim Unmesh, Qixing Huang, Karthik Ramani

"SurfNet: Generating 3D shape surfaces using deep residual networks" CVPR2017

Deep Learning on Point Cloud Representation

Point Cloud: the Most Common Sensor Output

Figure from the recent VoxelNet paper from Apple.

Point Cloud as 3D Input

Deep Learning on Sets (orderless)

Properties of a desired neural network on point clouds

2D array representation

Point cloud: N **orderless** points, each represented by a D dim coordinate

Hao Su^{*}, Charles Qi^{*}, Kaichun Mo, Leonidas Guibas "**PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation**" *CVPR2017 (oral)*

Properties of a desired neural network on point clouds

Point cloud: N **orderless** points, each represented by a D dim coordinate

Properties of a desired neural network on point clouds

Point cloud: N **orderless** points, each represented by a D dim coordinate

Permutation invariance:

$$f(x_1, x_2, \dots, x_n) \equiv f(x_{\pi_1}, x_{\pi_2}, \dots, x_{\pi_n}), \quad x_i \in \mathbb{R}^D$$

Examples:

. . .

$$f(x_1, x_2, \dots, x_n) = \max\{x_1, x_2, \dots, x_n\}$$
$$f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n$$

Hao Su

Observe:

Observe:

Observe:

Observe:

Q: What symmetric functions can be constructed by PointNet?

PointNet (vanilla)

A: Universal approximation to continuous symmetric functions

Theorem:

A Hausdorff continuous symmetric function $f: 2^{\chi} \to \mathbb{R}$ can be arbitrarily approximated by PointNet.

$$\left| f(S) - \left(\begin{array}{c} \gamma \left(\underset{x_i \in S}{\text{MAX}} \left\{ h(x_i) \right\} \right) \right| < \epsilon \\ S \subseteq \mathbb{R}^d, \quad \text{PointNet (vanilla)} \end{array} \right)$$

PointNet is Light-weight

Robustness to data corruption

Robustness to data corruption

Segmentation from partial scans

Visualize what is learned by reconstruction

Salient points are discovered!

PointNet v2.0: Multi-Scale PointNet

- 1. Larger receptive field in higher layers
- 2. Less points in higher layers (more scalable)
- 3. Weight sharing
- 4. Translation invariance (local coordinates in local regions)

Charles Qi, Hao Su, Li Yi, Leonidas Guibas "PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space" NIPS 2017

Fuse 2D and 3D: Frustum PointNets for 3D Object Detection

+ Leveraging mature 2D detectors for region proposal and 3D search space reduction
+ Solving 3D detection problem with 3D data and 3D deep learning architectures

My latest paper accepted at CVPR 2018

Our method ranks No. 1 on KITTI 3D Object Detection Benchmark

We get 5% higher AP than Apple's recent CVPR submission and more than 10% higher AP than previous SOTA in easy category

Car	2								
1	Method	Setting	Code	Moderate	Ensy	Hard	Runtime	Environment	Compare
1	F-PointNet			70.39 %	\$1.20%	62.19%	0.17 s	GPU \otimes 3.0 Ghz (Python)	
2	VxNet(LiDAR)			65.11 %	77.47 %	57.73 %	0.23 s	GPU \otimes 2.5 Ghz (Python + C/C++)	
3	AN/OD			65.02 %	78.48 %	57.87 %	0.06 s	Titan X (pascal)	
4	MV3D	3		62.35 %	71.09 %	55.12 %	0.36 s	GPU @ 2.5 Ghz (Python + C/C++)	
c Che	n, H. Na, J. Wan, B. I	u and T. Xia: 州	ulti-View 30	Object Detection	Network for A	atonomeus Driv	ng. CVPR 2017.		
5	MV3D (LIDAR)	2		52.73 %	65.77 %	51.31%	0.24 s	GPU @ 2.5 Ghz (Python + C/C++)	
C Ohe	n, H. Ma, J. Wan, B. I	U and T. Xla: M	ulti-View 30	Object Detection	Network for A	atonomeus Drivi	ng. CVPR 2017.		
6	F-PC_CNN	2		42.67 %	50.46 %	40.15 %	0.5 s	GPU @ 3.0 Ghz (Matlab + C/C↔)	
7	SON			21.36 %	34.05 %	18,59 %	0.07 s	GPU @ 1.5 Ghz (Python)	
8	LWNetV2			15.24 %	14.75 %	12.85 %	0.02 s	GPU @ 2.5 Ghz (C/C++)	0
9	3d5SD			14.97 %	14.71 %	19.43 %	0.03 s	GPU ≥ 2.5 Ghz (Python + C/C++)	
10	LMnet			9.19 %	11.32 %	9.19 %	0.1 s	GPU @ 1.1 Ghz (Pythan + C/C++)	0

Our method ranks No. 1 on KITTI 3D Object Detection Benchmark

We are also 1st place for smaller objects (ped. and cyclist) winning with even bigger margins.

1	Method	Setting	Code	Moderate	Easy	Hard	Runtime	Environment	Company
ł	E-PointNet			44.89 %	51.21%	40.23 %	0.17 s	GPU @ 3.0 Ghz (Python)	0
1	Vs/Net(LiDAR)			33.69 %	39.48 %	31.51 %	0.23 s	GPU @ 2.5 Ghz (Python + C/C++)	
l	AVOD	E.		25.87 %	32.67 %	25.01 %	0.08 s	Titan X (pascal)	
e.	3dSSD	1	1	17.35 %	20.22 %	17.20%	0.015	GPU @ 2.5 Gbz (Python + C/C++)	1 0
	clict					•	0.011		
yc	<u>clist</u>	Setting	Code	Moderate	Easy	e e	Buctime	Environment	Compare
yc	<u>clist</u> Method	Setting	Code	Moderate	Easy	Hard	Runtime	Environment	Compare
<u>/(</u>	Clist Method F-PointNet	Setting	Code	Moderate 56.77 %	Easy 71.96 %	Hard 50.39 %	Runtime 0.17 s	Environment GPU @ 3.0 Gitz (Python)	Compare
	Clist Method F-PointNet VzNet(LiDAR)	Setting 대	Code	Moderate 56.77 % 48.36 %	Easy 71.96 % 61.22 %	Hard 50.39 % 44.37 %	Runtime 0.17 s 0.23 s	Environment GPU @ 3.0 Gitz (Python) GPU @ 2.5 Gitz (Python + C/C++)	Compare

Pedestrian

Remarkable box estimation accuracy even with a dozen of points or with very partial point cloud

Point Cloud as 3D Output

Deep Learning to Generate Combinatorial Objects

Supervision from "Synthesize for Learning"

3D Representation: Point Cloud

Describe shape for the whole object

? Usable as **network output**?

No prior works in the deep learning community!

99

3D Prediction by Point Clouds

Input

Reconstructed 3D point cloud

Hao Su, Haoqiang Fan, Leonidas Guibas "A Point Set Generation Network for 3D Object Reconstruction from a Single Image" *CVPR2017 (oral)*

3D Prediction by Point Clouds

Input

Reconstructed 3D point cloud

Pipeline

CVPR '17, Point Set Generation

Loss function: Earth Mover's Distance (EMD)

· Given two sets of points, measure their discrepancy:

$$d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} ||x - \phi(x)||_2$$

where $\phi: S_1 \to S_2$ is a bijection.

Differentiable Admit fast computation

Generalization to Unseen Categories

Deep Learning on Primitives

Describe Shapes by Primitives

- What are parts? Reusable substructures!
- A Structure Mining Problem
- By DL, also a Meta-Learning Problem

Primitive-based Assembly

Shubham Tulsiani, Hao Su, Leonidas Guibas, Alexei A. Efros, Jitendra Malik Learning Shape Abstractions by Assembling Volumetric Primitives *CVPR 2017*

Approach

We predict primitive parameters: size, rotation, translation of M cuboids.

Variable number of parts? We predict "primitive existence probability"
Generative Models for Shapes by Reusing Primitives

Incremental Assembly-based modeling "Transfer Learning" in the sense of reusing prior knowledge

Primitive Space from ShapeNet Parts

Hao Su

Markov Modeling Process

Part assembly:

Markov process – *Incrementally* assemble parts.

Sung et al, ComplementMe: Weakly-Supervised Component Suggestions for 3D Modeling SIGGRAPH Asia 2017

New part proposal by network

Automatic Shape Synthesis

Automatic Shape Synthesis

UC San Diego

Thank you!